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aP’ apothem of the polygon ; 
43 constant [see equation (7)] ; 
k 1, thermal conductivity coefficient of the 

circular concentric core (Sub-domain I, 
see Fig. 1); 

k 2, thermal conductivity coefficient 
(Sub-domain II, see Fig. 1); 

41, heatfluxforR=R,; 

R, arbitrary radius; 

RI, radius of the circular concentric core; 

r1, 
s, 

radius in the t-plane [see equation (lo)] ; 
heat generation constant ; 

T, temperature; 
T 

TY: 

wall temperature (outer boundary); 
temperature (at R = R,). 
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NOMENCLATURE 

INTRODUCTION 

CONSIDER the thermal system shown in Fig. l(a) governed 
by the differential system: 

Sub-domain I: 

k,V2T= -s (O<R<R,) 

where s is the heat generation constant. 

(1) 

Sub-domain II: 

V’T=O (R>R,) (2) 

T[L(x, y) = 0] = To (3) 

where L(x,y) = 0 denotes the functional relation which 
defines the boundary of the domain. 

For the sake of generality it is assumed that the material 
of sub-domain II is characterized, from a thermal view- 
point, by a conductivity coefficient k,. 

An exact solution of the governing differential system 
appears to be out of the question. 

An approximate, analytical approach based on the 
conformal mapping technique is developed in the present 
paper. The results are in good agreement with values 
obtained by means of the finite element method. 

It is important to point out that configurations such as 
that shown in Fig. 1 and whose thermal behavior is 
governed by equations (l)-(3) are of basic importance in 
several fields of applied sciences: biomedicine, nuclear and 
chemical engineering, etc. 

For instance, a cylindrical rod with heat generation is 
usually taken as a reasonable approximation to estimate 
the temperature rise in a working muscle fiber. Figure 1 
corresponds to a more general situation where a group of 
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working muscle fibers is surrounded by a material of non- 
heat generation characteristics and with a non-circular 
boundary configuration. 

APPROXIMATE,ANALYTICALSOLUTION 

If R, < ap it is reasonable to make the approximation: 

T(R,+)/R = R, = Tl (4) 

where Tl is a constant value which will be determined at a 
later stage. 

Accordingly, the solution of the differential system (1) 
and (4) is given by: 

T= Tl +$(R:-R’) 
I 

and the heat flux, for R = R,, results: 

dT 1 
q, = -k, E R = R, = 

s 

I 2 

In the sub-domain II the thermal problem is defined by 
equations (2) and (3). Since (2) is Laplace’s equation one 
can make use of the conformal mapping method. 

It has already been shown [2], that the approximate 
transformation of sub-domain II in the z-plane onto an 
annulus in the t-plane is an easy task if RI/a, < 1 [see Fig. 

1 @)I. 
Regular, polygonal domains are mapped conformally 

onto a unit circle in the [-plane by the functional relation: 

z = a;A s f aI +js t’+‘s; a, = I (7) 
,=o 

where s is the order of the polygon. The parameters A, and 
a, +js are tabulated in [2]. 

When RI/a, < 1 one has: 

z=ap.As.t (8) 

and accordingly : 

R, z op. A; r,. (9) 

Then, the radius of a circle in the t-plane which maps, 
approximately, onto a circle of radius R = R, in the z-plane 
is given by: 

rl = R,ja; A,. (10) 
between the sub- 
flux entering II is 

Assuming an ideal thermal contact 
domains I and II for R = R,, the heat 
given by (6) and the total heat results: 

q = ,$.n.R2 1’ 
In the c-plane one has: 

q = -k+,-dT 
dr 

Accordingly: 

q.; = -k,.2n.dT 

(11) 

(12) 

(13) 
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FIG. 1. (a) System under study. (b) Approximate conformal mapping of the domain. (c) 
distribution. 

Finite 

and integrating between r, and 1 one obtains: 

q,lni= -2n.!f,(T,-T,). 

Substituting (10) in (14) results in the relation: 

(14) 

T, 2 T, - z4T [ln(R,iu,) - In 41. (15) 
2 

From equations (5) (11) and (15) one determines the 
temperature variation in the sub-domain I which in non- 
dimensional form results: 

k, 
(16) 

On the other hand, the temperature distribution in the 
image of the sub-domain II is given by (13) integrated 
between r, and r: 

q.lnl= 2n,k,(T-To) 
I 

(17) 

Table 1. Comparison of results in the case of a prismatic, 
square rod (kZ/kl = 2) 

T- To 

s. Rf/k, 

R,/u, = 0.20: 4 = 0 R,la, = 0.50; 4 = 0 

Rla, 
Finite 

Analytical elements Analytical 

0 0.6713 0.6715 0.4422 
0.08 0.63 13 0.6298 0.4358 
0.16 0.5113 0.5090 0.4 166 
0.24 0.3757 0.3734 0.3846 
0.32 0.3036 0.3020 0.3398 
0.40 0.2475 0.2463 0.2822 
0.48 0.2014 0.2004 0.2110 
0.56 0.1621 0.1613 0.1621 
0.64 0.1274 0.1268 0.1274 
0.72 0.0961 0.0956 0.096 1 
0.80 0.0671 0.0667 0.067 1 
0.88 0.0397 0.0395 0.0396 
0.96 0.0134 0.0131 0.0134 
1.00 0.0012 0.0000 0.0012 

Finite 
elements 

0.4425 
0.4358 
0.4165 
0.3844 
0.3394 
0.2814 
0.2092 
0.1615 
0.1271 
0.0958 
0.0669 
0.0396 
0.0131 
0.0000 
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and from (11) and (17) one finally obtains: 

rw 
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FIG. 2. Dimensionless temperature distribution. (a) Penta- 
gonal outer boundary. (b) Hexagonal outer boundary. 

T- T, In r 

W=--’ 2(W,) 
(18) 

k, 
Using now equations (7) and (18) one determines the 

thermal field in the sub-domain II 
Numerical results of the problem governed by equations 

(I), (2) and (3) were also obtained using a finite element 
code.* The domain is subdivided into triangular elements 
and a linear variation of the temperature field is assumed 
inside the element [see Fig. 1 (c)l. 

The accuracy of the algorithm is quite satisfactory from a 
practical viewpoint since it yields an agreement better than 
0.5% with exact solutions when using a subdivision similar 
to that shown in Fig. l(c). 

COMPARISON OF RESULTS AND CONCLUSIONS 

Table 1 depicts a comparison of results for an outer 
square shape (RJR, = 0.20 and 0.50; rj~ = 0”). 

Figure 2 deals with pentagonal and hexagonal boun- 
daries and the dimensionless temperature parameter has 
been plotted for C#J = n/5 and ?r/6, respectively. 

All calculations have been performed taking k,/k, = 2. 
It may be concluded that the agreement is remarkably 

good for the cases considered and even in the cases where 
the values of R,/a, are relatively large (in spite of the 
approximations involved when using the analytical 
approach). 

1 
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CP, fluid heat capacity at constant pressure; 

D, wire diameter; 

9. acceleration of gravity ; 
Gr, Grashof number, 13pzgptI/$; 

h, heat-transfer coefficient; 

1, wire length ; 
Nf-4 Nusseh number, hD/L ; 
Pr, Prandtl number, C,n/Iz; 

T, temperature: 

L temperature of the enclosure. 

NOMENCLATURE 

Greek symbols 

/I, fluid coefficient of thermal expansion ; 
‘1, dynamic viscosity; 

Q, wire to wall temperature difference; 

4 fluid thermal conductivity; 

P. fluid density. 

INTRODUCTION 

CONVECTIVE heat transfer is governed by the laws of fluid 
flow, the equation of continuity, and the equation for the 
heat flow in a moving fluid. An exact solution of these 
equations with particular boundary conditions is not 
feasible except in certain simple cases. However, important 
relationships may be obtained from these equations by 
means of the theory of similarity. Thus for a natural 
convection the Nusselt number should be a function of the 
Grashof number and the Prandtl number, i.e. 

Nu = f (Gr, Pr). (1) 

The form of f (Gr, Pr) can be determined either strictly 
experimentally or by using theoretical analysis with some 
experimental information. 

Our current understanding of convective heat transfer 
from circular cylinders has been summarized in the recent 
review by Morgan [l]. According to his extensive survey 


